Homework 8 Geometry

Joshua Ruiter

April 8, 2018

Proposition 0.1 (Exercise 9-19). Let M be \mathbb{R}^3 with the z-axis removed. Define smooth vector fields V and W on M by

$$V = \frac{\partial}{\partial x} - \frac{y}{x^2 + y^2} \frac{\partial}{\partial z}$$
 $W = \frac{\partial}{\partial y} + \frac{x}{x^2 + y^2} \frac{\partial}{\partial z}$

and let θ be the flow of V and ψ be the flow of W. Then V,W commute, but there exist $p \in M$ and $s, t \in \mathbb{R}$ so that $\theta_t \circ \psi_s(p)$ and $\psi_s \circ \theta_t(p)$ are both defined but are not equal.

Proof. First we show that V, W commute by showing that [V, W] = 0.

$$\begin{split} [V,W] &= \left[\frac{\partial}{\partial x} - \frac{y}{x^2 + y^2} \frac{\partial}{\partial z}, \frac{\partial}{\partial y} + \frac{x}{x^2 + y^2} \frac{\partial}{\partial z}\right] \\ &= \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right] + \left[\frac{\partial}{\partial x}, \frac{x}{x^2 + y^2} \frac{\partial}{\partial z}\right] - \left[\frac{y}{x^2 + y^2} \frac{\partial}{\partial z}, \frac{\partial}{\partial y}\right] - \left[\frac{y}{x^2 + y^2} \frac{\partial}{\partial z}, \frac{x}{x^2 + y^2} \frac{\partial}{\partial z}\right] \\ &= 0 + \left(\frac{\partial}{\partial x} \frac{x}{x^2 + y^2}\right) \frac{\partial}{\partial z} + \left(\frac{\partial}{\partial y} \frac{y}{x^2 + y^2}\right) \frac{\partial}{\partial z} + 0 \\ &= \frac{y^2 - x^2}{(x^2 + y^2)^2} \frac{\partial}{\partial z} + \frac{x^2 - y^2}{(x^2 + y^2)^2} \frac{\partial}{\partial z} \\ &= 0 \end{split}$$

Thus V and W commute. Now we let p=(1,0,0) and s=t=1 and compute $\theta_t \circ \psi_s(p)$ and $\psi_s \circ \theta_t(p)$. We begin by computing $\theta_1(p)$. An integral curve $\gamma(t)=(x(t),y(t),z(t))$ of V through p satisfies the the system of differential equations

$$\begin{split} \dot{x} &= 1 \\ \dot{y} &= 0 \\ \dot{z} &= \frac{-y}{x^2 + y^2} \end{split}$$

with initial condition (x, y, z)(0) = (1, 0, 0). The solution is given by

$$x(t) = t + 1$$
$$y(t) = 0$$
$$z(t) = 0$$

thus $\theta_1(1,0,0)=(2,0,0)$. Now we compute $\psi_1(p)$. This involves solving the system

$$\dot{u} = 0$$

$$\dot{v} = 1$$

$$\dot{w} = \frac{u}{u^2 + v^2}$$

We can immediately see that u(t) = 1 and v(t) = t, which means that we have

$$w(t) = \int \frac{1}{1+t^2} dt = \arctan(t) + C$$

Given the initial condition w(0) = 0, we have C = 0. Thus the solution to the IVP is

$$u(t) = 1$$

$$v(t) = t$$

$$w(t) = \arctan(t)$$

Thus $\psi_1(p) = (1, 1, \arctan(1)) = (1, 1, \frac{\pi}{4})$. Now we compute $\psi_1 \circ \theta_1(p)$. We solve the same system in u, v, w as above, now with the different initial condition (u, v, w)(0) = (2, 0, 0). The solution is

$$u(t) = 2$$

 $v(t) = t + 1$
 $w(t) = \arctan\left(\frac{t+1}{2}\right) - \arctan\left(\frac{1}{2}\right)$

thus $\psi_1 \circ \theta_1(p) = (2, 2, \arctan(1) - \arctan(\frac{1}{2}))$. Finally, we compute $\theta_1 \circ \psi_1(p)$. We solve the previous system in x, y, z with initial condition $(x, y, z)(0) = (1, 1, \frac{\pi}{4})$. We can see immediately that y(t) = 1 and x(t) = t + C. Using our initial condition, x(0) = 1 = C. Then we have

$$z(t) = \int \frac{-1}{(t+1)^2 + 1} dt = -\arctan(t+1) + C$$

and using our initial condition $z(0) = \frac{\pi}{4} = -\arctan(1) + C$ we get $C = \frac{\pi}{2}$ so

$$x(t) = t + 1$$

$$y(t) = 1$$

$$z(t) = -\arctan(t+1) + \frac{\pi}{2}$$

Thus $\theta_1 \circ \psi_1(p) = (2, 1, -\arctan(2) + \frac{\pi}{2})$. Recall that we computed

$$\psi_1 \circ \theta_1(p) = \left(2, 2, \arctan(1) - \arctan\left(\frac{1}{2}\right)\right)$$

The second entries are obviously not equal (nor are the third entries, though that is less obvious), so our claim is proven. \Box

(Exercise 10-7)

Compute the transition function for TS^2 associated with the two local trivializations determined by stereographic coordinates.

Solution. We denote the stereographic coordinates by $\phi = (x, y)$ and $\psi = (u, v)$, where $\phi: S^2 \setminus \{N\} \to \mathbb{R}^2$ and $\psi: S^2 \setminus \{S\} \to \mathbb{R}^2$, given explicitly by

$$(x,y) = \phi(p) = \phi(p^1, p^2, p^3) = \left(\frac{p^1}{1-p^3}, \frac{p^2}{1-p^3}\right)$$
$$(u,v) = \psi(p) = \psi(p^1, p^2, p^3) = \left(\frac{p^1}{1+p^3}, \frac{p^2}{1+p^3}\right)$$

For the tangent bundle $\pi: TS^2 \to S$ given by $(p, v) \mapsto p$ these charts give local trivializations

$$\Phi: \pi^{-1}(S^2 \setminus \{N\}) \to (S^2 \setminus \{N\}) \times \mathbb{R}^2$$

$$\Psi: \pi^{-1}(S^2 \setminus \{S\}) \to (S^2 \setminus \{S\}) \times \mathbb{R}^2$$

Explicitly, these are given by

$$\Phi\left(w^{1}\frac{\partial}{\partial x}\Big|_{p} + w^{2}\frac{\partial}{\partial y}\Big|_{p}\right) = (p, (w^{1}, w^{2}))$$

$$\Psi\left(w^{1}\frac{\partial}{\partial u}\Big|_{p} + w^{2}\frac{\partial}{\partial v}\Big|_{p}\right) = (p, (w^{1}, w^{2}))$$

The transition function associated with these local trivializations is a map

$$\tau: S^2 \setminus \{N, S\} \to \mathrm{GL}(2, \mathbb{R})$$

such that

$$\Phi \circ \Psi^{-1}(p, w) = (p, \tau(p)w)$$

where w is the column vector (w^1, w^2) . In Exercise 1-7, we computed the transition map between the charts ϕ and ψ to be

$$(x,y) = \left(\frac{u}{u^2 + v^2}, \frac{v}{u^2 + v^2}\right)$$

and so we can compute all the entries of the Jacobian:

$$\frac{\partial x}{\partial u} = \frac{v^2 - u^2}{(u^2 + v^2)^2} \qquad \frac{\partial x}{\partial v} = \frac{-2uv}{(u^2 + v^2)^2} \qquad \frac{\partial y}{\partial u} = \frac{-2uv}{(u^2 + v^2)^2} \qquad \frac{\partial y}{\partial v} = \frac{u^2 - v^2}{(u^2 + v^2)^2}$$

This allows us to do the following change of coordinates explicitly.

$$\frac{\partial}{\partial u}\bigg|_{p} = \frac{\partial x}{\partial u} \frac{\partial}{\partial x}\bigg|_{p} + \frac{\partial y}{\partial u} \frac{\partial}{\partial y}\bigg|_{p}$$
$$\frac{\partial}{\partial v}\bigg|_{p} = \frac{\partial x}{\partial v} \frac{\partial}{\partial x}\bigg|_{p} + \frac{\partial y}{\partial v} \frac{\partial}{\partial y}\bigg|_{p}$$

Finally, we compute the transition function $\Phi \circ \Psi^{-1}(p, w)$ to compute $\tau(p)$.

$$\begin{split} \Phi \circ \Psi^{-1}(p,w) &= \Phi \left(\left. w^1 \frac{\partial}{\partial u} \right|_p + \left. w^2 \frac{\partial}{\partial v} \right|_p \right) \\ &= \Phi \left(\left. w^1 \left(\frac{\partial x}{\partial u} \left. \frac{\partial}{\partial x} \right|_p + \frac{\partial y}{\partial u} \left. \frac{\partial}{\partial y} \right|_p \right) + v^2 \left(\frac{\partial x}{\partial v} \left. \frac{\partial}{\partial x} \right|_p + \frac{\partial y}{\partial v} \left. \frac{\partial}{\partial y} \right|_p \right) \right) \\ &= \Phi \left(\left. \left(\left. v^1 \frac{\partial x}{\partial u} + v^2 \frac{\partial x}{\partial v} \right) \left. \frac{\partial}{\partial x} \right|_p + \left(\left. v^1 \frac{\partial y}{\partial u} + v^2 \frac{\partial y}{\partial v} \right) \left. \frac{\partial}{\partial y} \right|_p \right) \right. \\ &= \left. \left(p, \left(\left. v^1 \frac{\partial x}{\partial u} + v^2 \frac{\partial x}{\partial v}, v^1 \frac{\partial y}{\partial u} + v^2 \frac{\partial y}{\partial v} \right) \right) \\ &= \left(p, \left[\left. \frac{\partial x}{\partial u} \quad \frac{\partial x}{\partial v} \right] \left[\left. w^1 \right] \right. \right) \end{split}$$

Thus

$$\tau(p) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \begin{bmatrix} \frac{v^2 - u^2}{(u^2 + v^2)^2} & \frac{-2uv}{(u^2 + v^2)^2} \\ \frac{-2uv}{(u^2 + v^2)^2} & \frac{u^2 - v^2}{(u^2 + v^2)^2} \end{bmatrix}$$

where (u, v) is a function of p as above, so we simplify. We switch to subscripts for indices so that we can use superscripts for exponents. Because $(p_1, p_2, p_3) \in S^2$, we have $p_1^2 + p_2^2 + p_3^2 = 1$ so $p_1^2 + p_2^2 = 1 - p_3^2 = (1 - p_3)(1 + p_3)$. In terms of p, the entries of $\tau(p)$ are

$$\frac{v^2 - u^2}{(u^2 + v^2)^2} = \frac{-(p_1^2 - p_2^2)(1 + p_3)^2}{(p_1^2 + p_2^2)^2} = \frac{-(p_1 - p_2)(p_1 + p_2)(1 + p_3)}{(1 - p_3)}$$
$$\frac{u^2 - v^2}{(u^2 + v^2)^2} = \frac{(p_1^2 - p_2^2)(1 + p_3)^2}{(p_1^2 + p_2^2)^2} = \frac{(p_1 - p_2)(p_1 + p_2)(1 + p_3)}{(1 - p_3)}$$
$$\frac{-2uv}{(u^2 + v^2)^2} = \frac{-2p_1p_2(1 + p_3)^2}{(p_1^2 + p_2^2)^2} = \frac{-2p_1p_2(1 + p_3)}{(1 - p_3)}$$

(Recall that τ is a map only on $S^2 \setminus \{N, S\}$ so we never have $p_3 = 1$, so the denominators are never zero.)

Proposition 0.2 (Exercise 10-12). Let M be a smooth manifold with or without boundary and let $\pi: E \to M$ and $\widetilde{\pi}: \widetilde{E} \to M$ be two smooth rank-k vector bundles over M. Suppose that $\{U_{\alpha}\}_{{\alpha}\in A}$ is an open cover of M such that both E and \widetilde{E} admit local trivializations over each U_{α} . Let $\{\tau_{\alpha\beta}\}, \{\widetilde{\tau}_{\alpha\beta}\}$ denote the transition functions determined by the given local trivializations of E and \widetilde{E} respectively. Then E, \widetilde{E} are smoothly isomorphic over M if and only if for each $\alpha \in A$ there exists a smooth map $\sigma_{\alpha}: U_{\alpha} \to \operatorname{GL}(k, \mathbb{R})$ such that

$$\widetilde{\tau}_{\alpha\beta}(p) = \sigma_{\alpha}(p)\tau_{\alpha\beta}(p)\sigma_{\beta}(p)^{-1}$$

for all $p \in U_{\alpha} \cap U_{\beta}$.

Proof. First ssppose that E, \widetilde{E} are smoothly isomorphic over M. Let $\alpha \in A$, and let $\phi_{\alpha}, \widetilde{\phi}_{\alpha}$ be local trivializations of E, \widetilde{E} respectively and $\tau_{\alpha\beta}, \widetilde{\tau}_{\alpha\beta}$ be the transition maps. Let $F: E \to \widetilde{E}$ be a bundle isomorphism. Then we have

$$\pi = \widetilde{\pi} \circ F$$
 $\widetilde{\pi} = \pi_{U_{\alpha}} \circ \widetilde{\phi}_{\alpha}$ $\pi = \pi_{U_{\alpha}} \circ \phi_{\alpha}$

We define ψ_{α} by $\psi_{\alpha} = \widetilde{\phi}_{\alpha} \circ F$ and claim that ψ_{α} is a local trivialization of E over U_{α} . The condition $\pi_{U_{\alpha}} \circ \psi_{\alpha} = \pi$ is satisfied as we have

$$\pi_{U_{\alpha}} \circ \psi_{\alpha} = \pi_{U_{\alpha}} \circ \widetilde{\phi}_{\alpha} \circ F = \widetilde{\pi} \circ F = \pi$$

We need to show that the restriction of ψ_{α} to $E_q = \pi^{-1}(q)$ is a vector space isomorphism to $\{q\} \times \mathbb{R}^k$. Note that $\pi^{-1} = F^{-1} \circ \widetilde{\pi}^{-1}$, so

$$\psi_{\alpha}(E_q) = \widetilde{\phi}_{\alpha} \circ F(E_q) = \widetilde{\phi}_{\alpha} \circ F \circ \pi^{-1}(q) = \widetilde{\phi}_{\alpha} \circ F \circ F^{-1} \circ \widetilde{\pi}^{-1}(q) = \widetilde{\phi}_{\alpha} \circ \widetilde{\pi}^{-1}(q)$$

Since $\widetilde{\phi}_{\alpha}$ is a local trivialization of \widetilde{E} , we have what we needed: $\psi_{\alpha}(E_q) = \widetilde{\phi}_{\alpha} \circ \widetilde{\pi}^{-1}(q)$ is isomorphic to $\{q\} \times \mathbb{R}^k$.

Now we have smooth local trivializations ϕ_{α} and ψ_{α} of E over U_{α} for each α . By Lemma 10.5, there exist smooth maps $\sigma_{\alpha}: U_{\alpha} \to \operatorname{GL}(k, \mathbb{R})$ and $\sigma_{\beta}: U_{\beta} \to \operatorname{GL}(k, \mathbb{R})$ such that

$$\psi_{\alpha} \circ \phi_{\alpha}^{-1}(p, v) = (p, \sigma_{\alpha}(p)v)$$
$$\psi_{\beta} \circ \phi_{\beta}^{-1}(p, v) = (p, \sigma_{\beta}(p)v)$$

Now we do a long computation to show that $\widetilde{\tau}_{\alpha\beta}(p) = \sigma_{\alpha}(p)\tau_{\alpha\beta}(p)\sigma_{\beta}(p)^{-1}$.

$$\begin{split} (p,\widetilde{\tau}_{\alpha\beta}(p)v) &= \widetilde{\phi}_{\alpha} \circ \widetilde{\phi}_{\beta}^{-1}(p,v) \\ &= \widetilde{\phi}_{\alpha} \circ (F \circ F^{-1}) \circ \widetilde{\phi}_{\beta}^{-1}(p,v) \\ &= \widetilde{\phi}_{\alpha} \circ F \circ (\phi_{\alpha}^{-1} \circ \phi_{\alpha}) \circ (\phi_{\beta}^{-1} \circ \phi_{\beta}) \circ F^{-1} \circ \widetilde{\phi}_{\beta}^{-1}(p,v) \\ &= \psi_{\alpha} \circ \phi_{\alpha}^{-1} \circ \phi_{\alpha} \circ \phi_{\beta}^{-1} \circ \psi_{\beta}^{-1}(p,v) \\ &= (\psi_{\alpha} \circ \phi_{\alpha})^{-1} \circ (\phi_{\alpha} \circ \phi_{\beta}^{-1}) \circ (\psi_{\beta} \circ \phi_{\beta}^{-1})^{-1}(p,v) \\ &= (\psi_{\alpha} \circ \phi_{\alpha})^{-1} (\phi_{\alpha} \circ \phi_{\beta}^{-1})(p,\sigma_{\beta}(p)^{-1}v) \\ &= (\psi_{\alpha} \circ \phi_{\alpha})(p,\tau_{\alpha\beta}(p)\sigma_{\beta}(p)^{-1}v) \\ &= (p,\sigma_{\alpha}(p)\tau_{\alpha\beta}(p)\sigma_{\beta}(p)^{-1}v) \end{split}$$

Thus $\widetilde{\tau}_{\alpha\beta}(p) = \sigma_{\alpha}(p)\tau_{\alpha\beta}(p)\sigma_{\beta}(p)^{-1}$. Now we show the other direction of implication. Suppose that for each α , the required σ_{α} exists. We must construct a bundle isomorphism $F: E \to \widetilde{E}$. First, we define $f_{\alpha}: U_{\alpha} \times \mathbb{R}^{k} \to U_{\alpha} \times \mathbb{R}^{k}$ by $f_{\alpha}(p,v) = \sigma_{\alpha}(p)v$. Then we define $F_{\alpha}: \pi^{-1}(U_{\alpha}) \to \widetilde{\pi}^{-1}(U_{\alpha})$ by $F_{\alpha} = \widetilde{\phi}_{\alpha}^{-1} \circ f_{\alpha} \circ \phi_{\alpha}$. Then we check that F_{α} agrees with F_{β} on the overlap $U_{\alpha} \cap U_{\beta}$:

$$F_{\beta} = \widetilde{\phi}_{\beta}^{-1} \circ f_{\beta} \circ \phi_{\beta}$$

$$= (\widetilde{\phi}_{\alpha}^{-1} \circ \widetilde{\phi}_{\alpha}) \circ \widetilde{\phi}_{\beta}^{-1} \circ f_{\beta} \circ \phi_{\beta} \circ (\phi_{\alpha}^{-1} \circ \phi_{\alpha})$$

$$= \widetilde{\phi}_{\alpha}^{-1} \circ (\widetilde{\phi}_{\alpha} \circ \widetilde{\phi}_{\beta}^{-1}) \circ f_{\beta} \circ (\phi_{\beta} \circ \phi_{\alpha}^{-1}) \circ \phi_{\alpha}$$

Now note that

$$(\widetilde{\phi}_{\alpha} \circ \widetilde{\phi}_{\beta}^{-1}) \circ f_{\beta} \circ (\phi_{\beta} \circ \phi_{\alpha}^{-1})(p, v) = (\widetilde{\phi}_{\alpha} \circ \widetilde{\phi}_{\beta}^{-1}) \circ f_{\beta}(p, \widetilde{\tau}_{\alpha\beta}(p)^{-1}v)$$

$$= (\widetilde{\phi}_{\alpha} \circ \widetilde{\phi}_{\beta}^{-1})(p, \sigma_{\beta}\tau_{\alpha\beta}(p)^{-1}v)$$

$$= (p, \widetilde{\tau}_{\alpha\beta}(p)\sigma_{\beta}(p)\tau_{\alpha\beta}(p)^{-1}v)$$

By hypothesis, $\widetilde{\tau}_{\alpha\beta}(p) = \sigma_{\alpha}(p)\tau_{\alpha\beta}(p)\sigma_{\beta}(p)^{-1}$, so $\widetilde{\tau}_{\alpha\beta}(p)\sigma_{\beta}(p)\tau_{\alpha\beta}(p)^{-1} = \sigma_{\alpha}(p)$. Thus

$$(\widetilde{\phi}_{\alpha} \circ \widetilde{\phi}_{\beta}^{-1}) \circ f_{\beta} \circ (\phi_{\beta} \circ \phi_{\alpha}^{-1})(p, v) = (p, \sigma_{\alpha}(p)v) = f_{\alpha}(p, v)$$

Thus

$$F_{\beta} = \widetilde{\phi}_{\alpha}^{-1} \circ (\widetilde{\phi}_{\alpha} \circ \widetilde{\phi}_{\beta}^{-1}) \circ f_{\beta} \circ (\phi_{\beta} \circ \phi_{\alpha}^{-1}) \circ \phi_{\alpha} = \widetilde{\phi}_{\alpha}^{-1} f_{\alpha} \phi_{\alpha} = F_{\alpha}$$

on the overlaps $\pi^{-1}(U_{\alpha}) \cap \pi^{-1}(U_{\beta})$. Clearly F is smooth as a composition other smooth functions. Thus by Corollary 2.8, there is a unique smooth map $F: E \to \widetilde{E}$ that agrees with F_{α} on $\pi^{-1}(U_{\alpha})$. We claim this map is a bundle isomorphism. First, we show that $\widetilde{\pi} \circ F = \pi$.

$$\widetilde{\pi} \circ F = \widetilde{\pi} \circ \widetilde{\phi}_{\alpha}^{-1} \circ f_{\alpha} \circ \phi_{\alpha} = \pi_{U_{\alpha}} \circ f_{\alpha} \circ \phi_{\alpha} = \pi_{U_{\alpha}} \circ \phi_{\alpha} = \pi$$

Note that $\pi_{U_{\alpha}} \circ f_{\alpha}(p,v) = \pi_{U_{\alpha}}(p,\sigma_{\alpha}(p)v) = p = \pi_{U_{\alpha}}(p,v)$. To see that $F|_{E_q}$ is linear, note that

$$F|_{E_q} = \widetilde{\phi}_{\alpha}^{-1} \circ f_{\alpha} \circ \phi_{\alpha}|_{E_q}$$

Because they are trivializations, $\widetilde{\phi}_{\alpha}^{-1}$ and ϕ_{α} are vector space isomorphisms. By definition f_{α} is also a vector space isomorphism, because $\sigma_{\alpha} \in GL(k, \mathbb{R})$. Finallly, we claim that F is a bijection. Let \widetilde{E}_q be a fiber over q. Then E_q is a fiber over q, so there exists $q, v \in E$. Then

$$\widetilde{\pi} \circ F(q,v) = \widetilde{\pi}(q,Av) = q$$

for some matrix A. Thus the image of F includes each fiber \widetilde{E}_q . Since F is a linear isomorphism on each fiber, this shows that F is a bijection. Then by Proposition 10.26, this makes F a bundle isomorphism.

Lemma 0.3 (for Exercise 11-6). Let M be a smooth manifold and $p \in M$ and $\lambda \in T_p^*M$. Then there exists a neighborhood U of p and a smooth function $y: U \to \mathbb{R}$ such that $dy|_p = \lambda$.

Proof. Let $(U,(x^i))$ be a smooth chart with $p \in U$. Then let $(\frac{d}{dx^i}|_p)$ be the usual basis for T_pM and $dx^i|_p$ be the dual basis for T_p^*M . Then we can write λ as

$$\lambda = \sum_{i} \lambda_i dx^i|_p$$

for scalars $\lambda_i \in \mathbb{R}$. Define $y = \sum_i \lambda_i x^i$. Then

$$|dy|_p = d\left(\sum_i \lambda_i x^i\right) = \sum_i \lambda_i dx^i|_p = \lambda$$

Proposition 0.4 (Exercise 11-6). Let M be a smooth n-manifold, $p \in M$, and $y^1, \dots y^k$ smooth real-valued functions on a neighborhood of p. Then

- 1. If k = n and $(dy^1|_p, \ldots, dy^n|_p)$ is a basis for T_p^*M then (y^1, \ldots, y^n) are smooth coordinates for M in a neighborhood of p.
- 2. If $(dy^1|_p, \ldots, dy^k|_p)$ is a linearly independent k-tuple of covectors and k < n, then there are smooth functions $y^{k+1}, \ldots y^n$ such that $(y^1, \ldots y^n)$ are smooth coordinates for M in a neighborhood of p.
- 3. If $(dy^1|_p, \ldots, dy^k|_p)$ span T_p^*M (this implies k > n), there are indices $i_1, \ldots i_n$ such that $(y^{i_1}, \ldots, y^{i_n})$ are smooth coordinates for M in a neighborhood of p.

Proof. First we show (1). Let (y^1, \ldots, y^n) be smooth real-valued functions on a neighborhood U of p, such that $(dy^1|_p, \ldots, dy^n|_p)$ is a basis for T_p^*M . Define $F: U \to \mathbb{R}^n$ by $F(p) = (y^1(p), \ldots, y^n(p))$. We claim that dF_p is invertible. Let (v_1, \ldots, v_n) be the dual basis to $(dy^1|_p, \ldots, dy^n|_p)$, so

$$v_i(dy^j|_p) = \delta_{ij}$$

We canonically identify $(T_p^*M)^*$ with T_pM , so we can also think of v_i as a vector in T_pM . If (x^1, \ldots, x^n) are the standard coordinate functions on \mathbb{R}^n , then we have

$$dF_p(v_i)(x^j) = v_i(x^j \circ F) = v_i y^j = \delta_{ij}$$

We claim that the kernel of dF_p is trivial. If $a^i v_i \in \ker dF_p$, then

$$0 = dF_p(a^i v_i)(x^j) = \sum_i a^i \delta_{ij} = a^j$$

for all j, so $a^i v_i = 0$. Thus dF_p has trivial kernel, so it is injective. Since it is a linear map between T_pM and $T_p\mathbb{R}^n$, vector spaces of the same dimension, this implies that it is bijective (and hence invertible). Now by Theorem 4.5 (Inverse Function Theorem for Manifolds), there exists a neighborhood V of p such that $F|_V:V\to F(V)\subset\mathbb{R}^n$ is a diffeomorphism. Thus $(y^1,\ldots y^n)$ are smooth local coordinates on V.

Now we show (2). We have a linearly independent k-tuple of covectors $(dy_p^1, \ldots, dy^k|_p)$ in T_p^*M , so we can extend it to a basis $(dy^1|_p, \ldots dy^k|_p, \omega^{k+1}, \ldots \omega^n)$. By the above lemma, there exist smooth functions y^{k+1}, \ldots, y^n defined on a neighborhood of p such that $dy^{k+1}|_p = \omega^{k+1}, \ldots, dy^n|_p = \omega^n$. Then by part (1), (y^1, \ldots, y^n) are smooth coordinates for M in a neighborhood of p.

Now we show (3). We have $(dy^1|_p, \ldots, dy^k|_p)$ spanning T_p^*M . As every spanning set of a vector space contains a basis, there exist indices $i_1, \ldots i_n$ such that $(dy^{i_1}|_p, \ldots, dy^{i_n}|_p)$ is a basis for T_p^*M . The by part (1), $(y^{i_1}, \ldots, y^{i_n})$ are smooth coordinates for M in a neighborhood of p.

Proposition 0.5 (Exercise 11-7a). Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be the map $F(x,y) = (xy,e^y) = (u,v)$ and let $\omega_{(x,y)} = x \ dy - y \ dx$. Then

$$F^*\omega = (x-1)ye^x dx - xe^x dy$$

Proof.

$$F^*\omega = (u \circ F)d(v \circ F) + (-v \circ F)d(u \circ F) = xyd(e^x) - e^xd(xy)$$
$$= xye^x dx - e^x(y dx + x dy) = xye^x dx - ye^x dx - xe^x dy$$
$$= (x - 1)ye^x dx - xe^x dy$$

Proposition 0.6 (Exercise 11-10c). Let $f: S^2 \to \mathbb{R}$ be the map f(p) = z(p), the z-coodinate for p as a point in \mathbb{R}^3 . Let (u, v) be the stereographic coordinates on $S^2 \setminus \{N\}$. Then

$$df = \frac{4u}{(1+u^2+v^2)^2}du + \frac{4v}{(1+u^2+v^2)^2}dv$$

on $S^2 \setminus \{N\}$, and $df_p = 0$ at only the north and south poles.

Proof. We can write f as

$$f(u,v) = \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}$$

Then

$$df = \frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv = \frac{4u}{(1+u^2+v^2)^2}du + \frac{4v}{(1+u^2+v^2)^2}dv$$

This is zero precisely when (u, v) = (0, 0) which is at the south pole. Let (s, t) be the stereographic coordinates on $S^2 \setminus \{S\}$, then we have

$$f(s,t) = \frac{-s^2 - t^2 + 1}{s^2 + t^2 + 1}$$

then

$$df = \frac{-4s}{(1+s^2+t^2)^2}ds + \frac{-4t}{(1+s^2+t^2)^2}dt$$

This agrees with our other computation of df on $S^2 \setminus \{N, S\}$ and allows us to compute $df_N = df_{(s,t)=(0,0)} = 0$.

Proposition 0.7 (Exercise 11-11). Let M be a smooth n-manifold and $C \subset M$ an embedded k-dimensional submanifold. Let $f \in C^{\infty}(M)$ and suppose that $p \in C$ is a point at which f attains a local maximum or minimum value among points in C. Let $\phi: U \to \mathbb{R}^k$ be a smooth local defining function for C on a neighborhood U of p in M. Then there are real numbers $\lambda_1, \ldots \lambda_k$ such that

$$df_p = \lambda_1 d\phi^1|_p + \ldots + \lambda_k d\phi^k|_p$$

Proof. By Theorem 5.8, there is a smooth chart (V, ψ) for M with $p \in V$ such that $V \cap C$ is a single k-slice in U. We may choose $V \subset U$ by taking the portion of V contained in U if necessary. Let $\widehat{f} = f \circ \psi^{-1}$ be the coordinate representation of f, and define $\widehat{V} = \psi(V)$ and $\widehat{\phi} = \phi \circ \psi^{-1}$ and $\widehat{p} = \psi(p)$. Note that then \widehat{p} is a local extrema for \widehat{f} .

Because ϕ is a defining function for C, it is constant on C, so $\widehat{\phi}$ is constant on \widehat{V} . If ϕ^1, \ldots, ϕ^k are the component functions of ϕ , then we have functions $\widehat{\phi}^i : \widehat{V} \to \mathbb{R}$, all of which

are constant functions as $\widehat{\phi}$ is constant on \widehat{V} . Let $c_i = \widehat{\phi}^i(x)$. So \widehat{p} is a local extrema of \widehat{f} subject to the constraints

 $\widehat{\phi}^i(x) - c_i = 0$

Because $\widehat{\phi}$ is a submersion, the Jacobian is invertible. Thus by the method of Lagrange multipliers on \mathbb{R}^n , we know that there are real constants $\lambda_1, \ldots, \lambda_k$ so that

$$d\widehat{f}_{\widehat{p}} = \lambda_j d\widehat{\phi}^j|_{\widehat{p}}$$

By the chain rule, we have

$$d\widehat{f}_{\widehat{p}} = d(f \circ \psi^{-1})_{\widehat{p}} = df_p \circ d\psi_{\widehat{p}}^{-1}$$
$$d\widehat{\phi}^j = d(\phi^j \circ \psi^{-1})_{\widehat{p}} = d\phi_p^j \circ d\psi_{\widehat{p}}^{-1}$$

so then

$$df_p \circ d\psi_{\widehat{p}}^{-1} = \lambda_j (d\phi_p^j \circ d\psi_{\widehat{p}}^{-1}) \implies df_p = \lambda_j d\phi_p^j \circ d\psi_{\widehat{p}}^{-1} \circ d\psi_{\widehat{p}} = \lambda_j d\phi_p^j$$

which was what we set out to show.