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Proposition 0.1 (Exercise 9-19). Let M be R3 with the z-axis removed. Define smooth
vector fields V and W on M by

V =
∂

∂x
− y

x2 + y2
∂

∂z
W =

∂

∂y
+

x

x2 + y2
∂

∂z

and let θ be the flow of V and ψ be the flow of W . Then V,W commute, but there exist
p ∈M and s, t ∈ R so that θt ◦ ψs(p) and ψs ◦ θt(p) are both defined but are not equal.

Proof. First we show that V,W commute by showing that [V,W ] = 0.

[V,W ] =

[
∂

∂x
− y

x2 + y2
∂

∂z
,
∂

∂y
+

x

x2 + y2
∂

∂z

]
=

[
∂

∂x
,
∂

∂y

]
+

[
∂

∂x
,

x

x2 + y2
∂

∂z

]
−
[

y

x2 + y2
∂

∂z
,
∂

∂y

]
−
[

y

x2 + y2
∂

∂z
,

x

x2 + y2
∂

∂z

]
= 0 +

(
∂

∂x

x

x2 + y2

)
∂

∂z
+

(
∂

∂y

y

x2 + y2

)
∂

∂z
+ 0

=
y2 − x2

(x2 + y2)2
∂

∂z
+

x2 − y2

(x2 + y2)2
∂

∂z

= 0

Thus V and W commute. Now we let p = (1, 0, 0) and s = t = 1 and compute θt ◦ ψs(p)
and ψs ◦ θt(p). We begin by computing θ1(p). An integral curve γ(t) = (x(t), y(t), z(t)) of V
through p satisfies the the system of differential equations

ẋ = 1

ẏ = 0

ż =
−y

x2 + y2

with initial condition (x, y, z)(0) = (1, 0, 0). The solution is given by

x(t) = t+ 1

y(t) = 0

z(t) = 0
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thus θ1(1, 0, 0) = (2, 0, 0). Now we compute ψ1(p). This involves solving the system

u̇ = 0

v̇ = 1

ẇ =
u

u2 + v2

We can immediately see that u(t) = 1 and v(t) = t, which means that we have

w(t) =

∫
1

1 + t2
dt = arctan(t) + C

Given the initial condition w(0) = 0, we have C = 0. Thus the solution to the IVP is

u(t) = 1

v(t) = t

w(t) = arctan(t)

Thus ψ1(p) = (1, 1, arctan(1)) = (1, 1, π
4
). Now we compute ψ1 ◦ θ1(p). We solve the same

system in u, v, w as above, now with the different initial condition (u, v, w)(0) = (2, 0, 0).
The solution is

u(t) = 2

v(t) = t+ 1

w(t) = arctan

(
t+ 1

2

)
− arctan

(
1

2

)
thus ψ1 ◦ θ1(p) =

(
2, 2, arctan(1)− arctan(1

2
)
)
. Finally, we compute θ1 ◦ ψ1(p). We solve

the previous system in x, y, z with initial condition (x, y, z)(0) = (1, 1, π
4
). We can see

immediately that y(t) = 1 and x(t) = t + C. Using our initial condition, x(0) = 1 = C.
Then we have

z(t) =

∫
−1

(t+ 1)2 + 1
dt = − arctan(t+ 1) + C

and using our initial condition z(0) = π
4

= − arctan(1) + C we get C = π
2

so

x(t) = t+ 1

y(t) = 1

z(t) = − arctan(t+ 1) +
π

2

Thus θ1 ◦ ψ1(p) =
(
2, 1,− arctan(2) + π

2

)
. Recall that we computed

ψ1 ◦ θ1(p) =

(
2, 2, arctan(1)− arctan

(
1

2

))
The second entries are obviously not equal (nor are the third entries, though that is less
obvious), so our claim is proven.
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(Exercise 10-7)
Compute the transition function for TS2 associated with the two local trivializations deter-
mined by stereographic coordinates.

Solution. We denote the stereographic coordinates by φ = (x, y) and ψ = (u, v), where
φ : S2 \ {N} → R2 and ψ : S2 \ {S} → R2, given explicitly by

(x, y) = φ(p) = φ(p1, p2, p3) =

(
p1

1− p3
,

p2

1− p3

)
(u, v) = ψ(p) = ψ(p1, p2, p3) =

(
p1

1 + p3
,

p2

1 + p3

)
For the tangent bundle π : TS2 → S given by (p, v) 7→ p these charts give local trivializations

Φ : π−1(S2 \ {N})→ (S2 \ {N})× R2

Ψ : π−1(S2 \ {S})→ (S2 \ {S})× R2

Explicitly, these are given by

Φ

(
w1 ∂

∂x

∣∣∣∣
p

+ w2 ∂

∂y

∣∣∣∣
p

)
= (p, (w1, w2))

Ψ

(
w1 ∂

∂u

∣∣∣∣
p

+ w2 ∂

∂v

∣∣∣∣
p

)
= (p, (w1, w2))

The transition function associated with these local trivializations is a map

τ : S2 \ {N,S} → GL(2,R)

such that
Φ ◦Ψ−1(p, w) = (p, τ(p)w)

where w is the column vector (w1, w2). In Exercise 1-7, we computed the transition map
between the charts φ and ψ to be

(x, y) =

(
u

u2 + v2
,

v

u2 + v2

)
and so we can compute all the entries of the Jacobian:

∂x

∂u
=

v2 − u2

(u2 + v2)2
∂x

∂v
=

−2uv

(u2 + v2)2
∂y

∂u
=

−2uv

(u2 + v2)2
∂y

∂v
=

u2 − v2

(u2 + v2)2

This allows us to do the following change of coordinates explicitly.

∂

∂u

∣∣∣∣
p

=
∂x

∂u

∂

∂x

∣∣∣∣
p

+
∂y

∂u

∂

∂y

∣∣∣∣
p

∂

∂v

∣∣∣∣
p

=
∂x

∂v

∂

∂x

∣∣∣∣
p

+
∂y

∂v

∂

∂y

∣∣∣∣
p
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Finally, we compute the transition function Φ ◦Ψ−1(p, w) to compute τ(p).

Φ ◦Ψ−1(p, w) = Φ

(
w1 ∂

∂u

∣∣∣∣
p

+ w2 ∂

∂v

∣∣∣∣
p

)

= Φ

(
w1

(
∂x

∂u

∂

∂x

∣∣∣∣
p

+
∂y

∂u

∂

∂y

∣∣∣∣
p

)
+ v2

(
∂x

∂v

∂

∂x

∣∣∣∣
p

+
∂y

∂v

∂

∂y

∣∣∣∣
p

))

= Φ

((
v1
∂x

∂u
+ v2

∂x

∂v

)
∂

∂x

∣∣∣∣
p

+

(
v1
∂y

∂u
+ v2

∂y

∂v

)
∂

∂y

∣∣∣∣
p

)

=

(
p,

(
v1
∂x

∂u
+ v2

∂x

∂v
, v1

∂y

∂u
+ v2

∂y

∂v

))
=

(
p,

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

][
w1

w2

])

Thus

τ(p) =

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
=

[
v2−u2

(u2+v2)2
−2uv

(u2+v2)2

−2uv
(u2+v2)2

u2−v2
(u2+v2)2

]

where (u, v) is a function of p as above, so we simplify. We switch to subscripts for indices so
that we can use superscripts for exponents. Because (p1, p2, p3) ∈ S2, we have p21+p22+p23 = 1
so p21 + p22 = 1− p23 = (1− p3)(1 + p3). In terms of p, the entries of τ(p) are

v2 − u2

(u2 + v2)2
=
−(p21 − p22)(1 + p3)

2

(p21 + p22)
2

=
−(p1 − p2)(p1 + p2)(1 + p3)

(1− p3)
u2 − v2

(u2 + v2)2
=

(p21 − p22)(1 + p3)
2

(p21 + p22)
2

=
(p1 − p2)(p1 + p2)(1 + p3)

(1− p3)
−2uv

(u2 + v2)2
=
−2p1p2(1 + p3)

2

(p21 + p22)
2

=
−2p1p2(1 + p3)

(1− p3)

(Recall that τ is a map only on S2 \ {N,S} so we never have p3 = 1, so the denominators
are never zero.)

Proposition 0.2 (Exercise 10-12). Let M be a smooth manifold with or without boundary

and let π : E → M and π̃ : Ẽ → M be two smooth rank-k vector bundles over M . Suppose
that {Uα}α∈A is an open cover of M such that both E and Ẽ admit local trivializations
over each Uα. Let {ταβ}, {τ̃αβ} denote the transition functions determined by the given local

trivializations of E and Ẽ respectively. Then E, Ẽ are smoothly isomorphic over M if and
only if for each α ∈ A there exists a smooth map σα : Uα → GL(k,R) such that

τ̃αβ(p) = σα(p)ταβ(p)σβ(p)−1

for all p ∈ Uα ∩ Uβ.
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Proof. First ssppose that E, Ẽ are smoothly isomorphic over M . Let α ∈ A, and let φα, φ̃α be
local trivializations of E, Ẽ respectively and ταβ, τ̃αβ be the transition maps. Let F : E → Ẽ
be a bundle isomorphism. Then we have

π = π̃ ◦ F π̃ = πUα ◦ φ̃α π = πUα ◦ φα

We define ψα by ψα = φ̃α ◦ F and claim that ψα is a local trivialization of E over Uα. The
condition πUα ◦ ψα = π is satisfied as we have

πUα ◦ ψα = πUα ◦ φ̃α ◦ F = π̃ ◦ F = π

We need to show that the restriction of ψα to Eq = π−1(q) is a vector space isomorphism to
{q} × Rk. Note that π−1 = F−1 ◦ π̃−1, so

ψα(Eq) = φ̃α ◦ F (Eq) = φ̃α ◦ F ◦ π−1(q) = φ̃α ◦ F ◦ F−1 ◦ π̃−1(q) = φ̃α ◦ π̃−1(q)

Since φ̃α is a local trivialization of Ẽ, we have what we needed: ψα(Eq) = φ̃α ◦ π̃−1(q) is
isomorphic to {q} × Rk.

Now we have smooth local trivializations φα and ψα of E over Uα for each α. By Lemma
10.5, there exist smooth maps σα : Uα → GL(k,R) and σβ : Uβ → GL(k,R) such that

ψα ◦ φ−1α (p, v) = (p, σα(p)v)

ψβ ◦ φ−1β (p, v) = (p, σβ(p)v)

Now we do a long computation to show that τ̃αβ(p) = σα(p)ταβ(p)σβ(p)−1.

(p, τ̃αβ(p)v) = φ̃α ◦ φ̃−1β (p, v)

= φ̃α ◦ (F ◦ F−1) ◦ φ̃−1β (p, v)

= φ̃α ◦ F ◦ (φ−1α ◦ φα) ◦ (φ−1β ◦ φβ) ◦ F−1 ◦ φ̃−1β (p, v)

= ψα ◦ φ−1α ◦ φα ◦ φ−1β ◦ ψ
−1
β (p, v)

= (ψα ◦ φα)−1 ◦ (φα ◦ φ−1β ) ◦ (ψβ ◦ φ−1β )−1(p, v)

= (ψα ◦ φα)−1(φα ◦ φ−1β )(p, σβ(p)−1v)

= (ψα ◦ φα)(p, ταβ(p)σβ(p)−1v)

= (p, σα(p)ταβ(p)σβ(p)−1v)

Thus τ̃αβ(p) = σα(p)ταβ(p)σβ(p)−1. Now we show the other direction of implication. Suppose
that for each α, the required σα exists. We must construct a bundle isomorphism F : E →
Ẽ. First, we define fα : Uα × Rk → Uα × Rk by fα(p, v) = σα(p)v). Then we define

Fα : π−1(Uα) → π̃−1(Uα) by Fα = φ̃−1α ◦ fα ◦ φα. Then we check that Fα agrees with Fβ on
the overlap Uα ∩ Uβ:

Fβ = φ̃−1β ◦ fβ ◦ φβ
= (φ̃−1α ◦ φ̃α) ◦ φ̃−1β ◦ fβ ◦ φβ ◦ (φ−1α ◦ φα)

= φ̃−1α ◦ (φ̃α ◦ φ̃−1β ) ◦ fβ ◦ (φβ ◦ φ−1α ) ◦ φα
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Now note that

(φ̃α ◦ φ̃−1β ) ◦ fβ ◦ (φβ ◦ φ−1α )(p, v) = (φ̃α ◦ φ̃−1β ) ◦ fβ(p, τ̃αβ(p)−1v)

= (φ̃α ◦ φ̃−1β )(p, σβταβ(p)−1v)

= (p, τ̃αβ(p)σβ(p)ταβ(p)−1v)

By hypothesis, τ̃αβ(p) = σα(p)ταβ(p)σβ(p)−1, so τ̃αβ(p)σβ(p)ταβ(p)−1 = σα(p). Thus

(φ̃α ◦ φ̃−1β ) ◦ fβ ◦ (φβ ◦ φ−1α )(p, v) = (p, σα(p)v) = fα(p, v)

Thus
Fβ = φ̃−1α ◦ (φ̃α ◦ φ̃−1β ) ◦ fβ ◦ (φβ ◦ φ−1α ) ◦ φα = φ̃−1α fαφα = Fα

on the overlaps π−1(Uα) ∩ π−1(Uβ). Clearly F is smooth as a composition other smooth

functions. Thus by Corollary 2.8, there is a unique smooth map F : E → Ẽ that agrees with
Fα on π−1(Uα). We claim this map is a bundle isomorphism. First, we show that π̃ ◦F = π.

π̃ ◦ F = π̃ ◦ φ̃−1α ◦ fα ◦ φα = πUα ◦ fα ◦ φα = πUα ◦ φα = π

Note that πUα ◦ fα(p, v) = πUα(p, σα(p)v) = p = πUα(p, v). To see that F |Eq is linear, note
that

F |Eq = φ̃−1α ◦ fα ◦ φα|Eq
Because they are trivializations, φ̃−1α and φα are vector space isomorphisms. By definition
fα is also a vector space isomorphism, because σα ∈ GL(k,R). Finallly, we claim that F is a

bijection. Let Ẽq be a fiber over q. Then Eq is a fiber over q, so there exists q, v ∈ E. Then

π̃ ◦ F (q, v) = π̃(q, Av) = q

for some matrix A. Thus the image of F includes each fiber Ẽq. Since F is a linear isomor-
phism on each fiber, this shows that F is a bijection. Then by Proposition 10.26, this makes
F a bundle isomorphism.

Lemma 0.3 (for Exercise 11-6). Let M be a smooth manifold and p ∈ M and λ ∈ T ∗pM .
Then there exists a neighborhood U of p and a smooth function y : U → R such that dy|p = λ.

Proof. Let (U, (xi)) be a smooth chart with p ∈ U . Then let ( d
dxi
|p) be the usual basis for

TpM and dxi|p be the dual basis for T ∗pM . Then we can write λ as

λ =
∑
i

λidx
i|p

for scalars λi ∈ R. Define y =
∑

i λix
i. Then

dy|p = d

(∑
i

λix
i

)
=
∑
i

λidx
i|p = λ
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Proposition 0.4 (Exercise 11-6). Let M be a smooth n-manifold, p ∈ M , and y1, . . . yk

smooth real-valued funcions on a neighborhood of p. Then

1. If k = n and (dy1|p, . . . , dyn|p) is a basis for T ∗pM then (y1, . . . , yn) are smooth coordi-
nates for M in a neighborhood of p.

2. If (dy1|p, . . . , dyk|p) is a linearly independent k-tuple of covectors and k < n, then there
are smooth functions yk+1, . . . yn such that (y1, . . . yn) are smooth coordinates for M in
a neighborhood of p.

3. If (dy1|p, . . . , dyk|p) span T ∗pM (this implies k > n), there are indices i1, . . . in such that
(yi1 , . . . , yin) are smooth coordinates for M in a neighborhood of p.

Proof. First we show (1). Let (y1, . . . , yn) be smooth real-valued functions on a neighborhood
U of p, such that (dy1|p, . . . , dyn|p) is a basis for T ∗pM . Define F : U → Rn by F (p) =
(y1(p), . . . , yn(p)). We claim that dFp is invertible. Let (v1, . . . , vn) be the dual basis to
(dy1|p, . . . , dyn|p), so

vi(dy
j|p) = δij

We canonically identify (T ∗pM)∗ with TpM , so we can also think of vi as a vector in TpM . If
(x1, . . . , xn) are the standard coordinate functions on Rn, then we have

dFp(vi)(x
j) = vi(x

j ◦ F ) = viy
j = δij

We claim that the kernel of dFp is trivial. If aivi ∈ ker dFp, then

0 = dFp(a
ivi)(x

j) =
∑
i

aiδij = aj

for all j, so aivi = 0. Thus dFp has trivial kernel, so it is injective. Since it is a linear map
between TpM and TpRn, vector spaces of the same dimension, this implies that it is bijective
(and hence invertible). Now by Theorem 4.5 (Inverse Function Theorem for Manifolds),
there exists a neighborhood V of p such that F |V : V → F (V ) ⊂ Rn is a diffeomorphism.
Thus (y1, . . . yn) are smooth local coordinates on V .

Now we show (2). We have a linearly independent k-tuple of covectors (dy1p, . . . , dy
k|p)

in T ∗pM , so we can extend it to a basis (dy1|p, . . . dyk|p, ωk+1, . . . ωn). By the above lemma,
there exist smooth functions yk+1, . . . , yn defined on a neighborhood of p such that dyk+1|p =
ωk+1, . . . , dyn|p = ωn. Then by part (1), (y1, . . . , yn) are smooth coordinates for M in a
neighborhood of p.

Now we show (3). We have (dy1|p, . . . , dyk|p) spanning T ∗pM . As every spanning set
of a vector space contains a basis, there exist indices i1, . . . in such that (dyi1|p, . . . , dyin|p)
is a basis for T ∗pM . The by part (1), (yi1 , . . . , yin) are smooth coordinates for M in a
neighborhood of p.

Proposition 0.5 (Exercise 11-7a). Let F : R2 → R2 be the map F (x, y) = (xy, ey) = (u, v)
and let ω(x,y) = x dy − y dx. Then

F ∗ω = (x− 1)yex dx− xex dy
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Proof.

F ∗ω = (u ◦ F )d(v ◦ F ) + (−v ◦ F )d(u ◦ F ) = xyd(ex)− exd(xy)

= xyex dx− ex(y dx+ x dy) = xyex dx− yex dx− xex dy
= (x− 1)yex dx− xex dy

Proposition 0.6 (Exercise 11-10c). Let f : S2 → R be the map f(p) = z(p), the z-coodinate
for p as a point in R3. Let (u, v) be the stereographic coordinates on S2 \ {N}. Then

df =
4u

(1 + u2 + v2)2
du+

4v

(1 + u2 + v2)2
dv

on S2 \ {N}, and dfp = 0 at only the north and south poles.

Proof. We can write f as

f(u, v) =
u2 + v2 − 1

u2 + v2 + 1

Then

df =
∂f

∂u
du+

∂f

∂v
dv =

4u

(1 + u2 + v2)2
du+

4v

(1 + u2 + v2)2
dv

This is zero precisely when (u, v) = (0, 0) which is at the south pole. Let (s, t) be the
stereographic coordinates on S2 \ {S}, then we have

f(s, t) =
−s2 − t2 + 1

s2 + t2 + 1

then

df =
−4s

(1 + s2 + t2)2
ds+

−4t

(1 + s2 + t2)2
dt

This agrees with our other computation of df on S2 \ {N,S} and allows us to compute
dfN = df(s,t)=(0,0) = 0.

Proposition 0.7 (Exercise 11-11). Let M be a smooth n-manifold and C ⊂M an embedded
k-dimensional submanifold. Let f ∈ C∞(M) and suppose that p ∈ C is a point at which f
attains a local maximum or minimum value among points in C. Let φ : U → Rk be a smooth
local defining function for C on a neighborhood U of p in M . Then there are real numbers
λ1, . . . λk such that

dfp = λ1dφ
1|p + . . .+ λkdφ

k|p

Proof. By Theorem 5.8, there is a smooth chart (V, ψ) for M with p ∈ V such that V ∩ C
is a single k-slice in U . We may choose V ⊂ U by taking the portion of V contained in U if
necessary. Let f̂ = f ◦ ψ−1 be the coordinate representation of f , and define V̂ = ψ(V ) and

φ̂ = φ ◦ ψ−1 and p̂ = ψ(p). Note that then p̂ is a local extrema for f̂ .

Because φ is a defining function for C, it is constant on C, so φ̂ is constant on V̂ . If
φ1, . . . , φk are the component functions of φ, then we have functions φ̂i : V̂ → R, all of which
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are constant functions as φ̂ is constant on V̂ . Let ci = φ̂i(x). So p̂ is a local extrema of f̂
subject to the constraints

φ̂i(x)− ci = 0

Because φ̂ is a submersion, the Jacobian is invertible. Thus by the method of Lagrange
multipliers on Rn, we know that there are real constants λ1, . . . , λk so that

df̂p̂ = λjdφ̂
j|p̂

By the chain rule, we have

df̂p̂ = d(f ◦ ψ−1)p̂ = dfp ◦ dψ−1p̂
dφ̂j = d(φj ◦ ψ−1)p̂ = dφjp ◦ dψ−1p̂

so then

dfp ◦ dψ−1p̂ = λj(dφ
j
p ◦ dψ−1p̂ ) =⇒ dfp = λjdφ

j
p ◦ dψ−1p̂ ◦ dψp̂ = λjdφ

j
p

which was what we set out to show.
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