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Proposition 0.1 (Exercise 9-19). Let M be R® with the z-axis removed. Define smooth
vector fields V and W on M by
0 y 0 0 x 0
V=—- — W=—+————
Or 2?2+ y?0z 8y+x2+y28z
and let 0 be the flow of V' and ) be the flow of W. Then V,W commute, but there exist
p € M and s,t € R so that 0; o s(p) and s o 0,(p) are both defined but are not equal.

Proof. First we show that V| W commute by showing that [V, W] = 0.

o vy 99, x 0
Oor 22494202’ 0y 2244?20z

vowl= |

(ool o« Oy Ly 909y fy O =z 0
027 0y] 9272 +y? 0z [a? 49202 Oy] |22 +y? 027 2 +y? 0z

0 0 o y 0
=0+ (55— )5+ +0
oraz?+y?) 0z oyx?+y?) 0z
_ y2 _ 332 0 :B2 _ y2 o
(224 y2)202 (22 +y?)2 0z
=0
Thus V and W commute. Now we let p = (1,0,0) and s = ¢t = 1 and compute 6; o ¢(p)
and 15 0 0;(p). We begin by computing 6;(p). An integral curve v(t) = (x(t),y(t), 2(t)) of V'
through p satisfies the the system of differential equations
z=1
y=0
- __Y
x? + y?
with initial condition (z,y, z)(0) = (1,0,0). The solution is given by
z(t)=t+1
y(t) =0
2(t) =0



thus 0;(1,0,0) = (2,0,0). Now we compute 11(p). This involves solving the system

uw =20

v=1

_ U

W= ———
u? 4+ 02

We can immediately see that u(t) = 1 and v(t) = ¢, which means that we have

1
w(t) = / Nz dt = arctan(t) + C
Given the initial condition w(0) = 0, we have C' = 0. Thus the solution to the IVP is

u(t) =1
v(t) =t

w(t) = arctan(t)
Thus ¥1(p) = (1,1,arctan(1)) = (1,1, 7). Now we compute v, o 0;(p). We solve the same
system in u,v,w as above, now with the different initial condition (u,v,w)(0) = (2,0,0).
The solution is

u(t) =2
v(t)=t+1

t+1 1
w(t) = arctan (%) — arctan <§>

thus ¢ o 61(p) = (2,2, arctan(1) — arctan(3)). Finally, we compute 6; o ¢;(p). We solve
the previous system in x,y,z with initial condition (z,y,2)(0) = (1,1,%). We can see
immediately that y(t) = 1 and x(t) = t + C. Using our initial condition, z(0) = 1 = C.

Then we have

z(t) = / (_—1dt = —arctan(t + 1)+ C

t+1)2+1

and using our initial condition z(0) = § = —arctan(1) + C we get C' = 7 so
z(t)=t+1
y(t) =1

2(t) = —arctan(t + 1) + g
Thus 6; o ¢1(p) = (2,1, — arctan(2) + Z). Recall that we computed

11 060:1(p) = (2, 2 arctan(1) — arctan (%))

The second entries are obviously not equal (nor are the third entries, though that is less
obvious), so our claim is proven. ]



(Exercise 10-7)
Compute the transition function for T'S* associated with the two local trivializations deter-
maned by stereographic coordinates.

Solution. We denote the stereographic coordinates by ¢ = (x,y) and ¢ = (u,v), where
¢:S*\ {N} = R? and ¢ : S%\ {S} — R?, given explicitly by

1 2
(z,y) = ¢(p) = ¢(", p*,p*) = (1f—pg= 15—]93)

1 2
(u,v) =¥ (p) = v(p',p" p’) = <#p37 %pg)

For the tangent bundle 7 : T'S? — S given by (p,v) — p these charts give local trivializations

OS2\ {N}) = (S?\ {N}) x R?
U 1(SE\ {S}) = (5%\ {S}) x R?

Explicitly, these are given by

5 0
+w' o=
p ay
0
v

¥ w?—‘p) — (5, (" 0?))

> = (p. (w', w?)

0
U | w—
(w ou

The transition function associated with these local trivializations is a map

p

7: 5%\ {N, S} — GL(2,R)

such that
®o ¥ (p,w) = (p,7(p)w)

where w is the column vector (w!,w?). In Exercise 1-7, we computed the transition map
between the charts ¢ and 1 to be

(z.1) u v
€T =
Y u? 4+ v2’ u2 4 v?

and so we can compute all the entries of the Jacobian:

or v —u? dr  —2uww Oy  —2ww oy  ur—v?

ou (u? + v?2)? o (W2 + v?2)? ou (u2 + v2)? v (W2 + v?2)?

This allows us to do the following change of coordinates explicitly.

o _omo| oo
8up_8u8xp auﬁyp
o] ol o
8vp_8v8:vp 8v8yp



+ wzﬁ

Finally, we compute the transition function ® o ¥~1(p,w) to compute 7(p).
PoVt(pw)=>o wlg
’ ov

8up p)
or 0 dy 0 oxr 0 dy 0
:(D 1 et 2 et
v <8u ox +8u oy )+U (81} ox +8v oy ))
ox 8y 20y 9
= L2 22 = = | =
(U 8u ) ‘ < v (%) dy p)
ox ,0x (9y 50y
_ 194
- (p (“ o0 "0 au 0@))
NACE G

dxr Oz v2—u? —2uv
7_( ) o lou v | | WPHe?)? (uPte?)?
p)= oy oy| —2uv u?—v?

du v (u+v?)2  (u+0v?)2

Thus

where (u,v) is a function of p as above, so we simplify. We switch to subscripts for indices so
that we can use superscripts for exponents. Because (p1, p2, p3) € S?, we have p% + pg + pg =1
sop?+pi=1—p2=(1—p3)(1+p3). In terms of p, the entries of 7(p) are

v?—u?  —(pi = p3)(L+ps)®  —(p1—p2)(p1 + p2)(1 + ps)
(u? +02)2 (0% + p3)? Bl (1—ps)
w?—v? (pi—p3)(14ps)®  (p1—p2)(p1 +p2)(1 +p3)
(w4022 (p+pd)? (1—ps)
—2uv  =2pipa(1+p3)*  —2pipa(l + ps3)
(w2+0v2)?2  (pi+p3)? (1—ps)

(Recall that 7 is a map only on S%\ {N, S} so we never have p3 = 1, so the denominators
are never zero.)

Proposition 0.2 (Exercise 10-12). Let M be a smooth manifold with or without boundary
and let 7 : E — M and 7 : E — M be two smooth rank-k vector bundles over M. Suppose
that {Uqy}aca is an open cover of M such that both E and E admit local trivializations
over each Uy. Let {Top}, {Tap} denote the transition functions determined by the given local

trivializations of E and E respectively. Then FE, E are smoothly isomorphic over M if and
only if for each o € A there exists a smooth map o, : U, — GL(k,R) such that

72/(16 (p) - Ua(p)Taﬁ<p)gﬁ (p)_l

for allp € U, N Us.



Proof. First ssppose that F, E are smoothly isomorphic over M. Let a € A, and let ¢,, EEa be
local trivializations of E, E' respectively and 7,3, Tog be the transition maps. Let F': E — E
be a bundle isomorphism. Then we have

T=moF %:WUaoaa T =Ty, © ¢q

We define ¢, by ¥, = qza o F' and claim that v, is a local trivialization of E over U,. The
condition 7y, o 1, = 7 is satisfied as we have

7TU O¢QZWUQO$QOF:%OF:W

o

We need to show that the restriction of ¢, to E, = 7 !(q) is a vector space isomorphism to
{q} x R¥. Note that 77! = F~ o7 ! so

ValBy) = 600 F(E) = ¢ao Fom (q) = gaoFoF ' of '(q) = dao7 ()

Since ga is a local trivialization of E, we have what we needed: 9,(E,) = aa o 1(q) is
isomorphic to {q} x R*.

Now we have smooth local trivializations ¢, and v, of E over U, for each a. By Lemma
10.5, there exist smooth maps o, : U, — GL(k,R) and o5 : Ug — GL(k,R) such that

Vo © ¢;1(p7 U) = (pv Ua(p)v)
Vg0 ¢ (p.v) = (p,08(p)V)

Now we do a long computation to show that T,5(p) = 04 (p)Tas(p)os(p) .

(P, Fap(p)V) = da 0 &5 (p, V)
= 6o 0 (FoF 1) o (pv)
= a0 Fo(py' 0pa)o (g5 0dg) 0 F ' ooy (p,v)
= 1ha 0@, 0 ¢ 05" 01hyl(p,v)
= (Va0 ¢a) " 0 (¢a 0 d5') 0 (g ods") " (p,0)
= (Y © a) " (da 0 05") (P, 05(p) "0)
= (1ha © ¢a) (P, Tap(P)os(p)~'0)
= (9, 9a(P)Tap(P)os(p) "' v)

Thus Tas(p) = 0a(p)7as(p)os(p) . Now we show the other direction of implication. Suppose
that for each «, the required o, exists. We must construct a bundle isomorphism F': £ —
E. First, we define f, : U, x R*¥ — U, x R* by f.(p,v) = 0a(p)v). Then we define
F,: 7 YU, —» 7 YU,) by F, = 5;1 0 fo © ¢o. Then we check that F, agrees with Fj on
the overlap U, N Ug:

Fy=¢5' 0 fz0 65
= (5;1 o (Ea) o 5;1 o fzgopzo (¢;1 ° Pn)
=0,' 0 (9o 0 ngl) o fgo(dgod,')o da



Now note that

(Ga©d5) 0 fa0 (3506, )(P,v) = (Ga o d5") 0 f5(p. Tas(p) ')
= (00 0 05" (D, 04Tas(p) ")
= (P, Tas(P)s(P)Tas(p) ~'v)
By hypothesis, Tos(p) = 0a(p)Tas(p)os(p) ™, 80 Tap(p)os(p)Tas(p) ™ = 0o(p). Thus

(6a005") 0 f30 (050 0.")(p,v) = (p.0a(P)V) = falp,v)
Thus

FB = (b;l o ((ba 0¢§1) Ofﬁ o (¢,3 O¢;1) O¢a = ¢;1fa¢a = Fa
on the overlaps 7—1(U,) N 7= 1(Us). Clearly F is smooth as a composition other smooth
functions. Thus by Corollary 2.8, there is a unique smooth map F': £ — E that agrees with

F, on 77*(U,). We claim this map is a bundle isomorphism. First, we show that 7o F = 7.
%on%o%&lofaogba:WUaofaogba :WUaogba =T

Note that 7y, o fo(p,v) = Tu, (p,0a(p)v) = p = Ty, (p,v). To see that F|g, is linear, note
that

Flg, = 5;1 o fo © ¢alE,

Because they are trivializations, 5;1 and ¢, are vector space isomorphisms. By definition
fo is also a vector space isomorphism, because o, € GL(k,R). Finallly, we claim that F is a
bijection. Let E, be a fiber over q. Then Ej is a fiber over ¢, so there exists ¢,v € E. Then

To F(q,v) =7(q, Av) = q

for some matrix A. Thus the image of F' includes each fiber Eq. Since F' is a linear isomor-
phism on each fiber, this shows that F' is a bijection. Then by Proposition 10.26, this makes
F' a bundle isomorphism. O

Lemma 0.3 (for Exercise 11-6). Let M be a smooth manifold and p € M and X € Ty M.
Then there exists a neighborhood U of p and a smooth functiony : U — R such that dy|, = .

Proof. Let (U, (z')) be a smooth chart with p € U. Then let (5%
T,M and dz'[, be the dual basis for Ty M. Then we can write A as

A=) Nida|,

for scalars \; € R. Define y = >, A\;z*. Then

dyl, = d (Z m) = Nda'l, = A

») be the usual basis for



Proposition 0.4 (Exercise 11-6). Let M be a smooth n-manifold, p € M, and y',...y"*
smooth real-valued funcions on a neighborhood of p. Then

1. If k =n and (dy|,,...,dy"|,) is a basis for T>M then (y*,...,y") are smooth coordi-
nates for M in a neighborhood of p.

2. If (dy*|p, - - ., dy"|,) is a linearly independent k-tuple of covectors and k < n, then there
are smooth functions y**1 ... y" such that (y',...y") are smooth coordinates for M in
a neighborhood of p.

3. If (dy*,, - - -, dy*|,) span TxM (this implies k > n), there are indices iy, . . .1, such that

(y",...,y") are smooth coordinates for M in a neighborhood of p.

Proof. First we show (1). Let (y',...,y") be smooth real-valued functions on a neighborhood
U of p, such that (dy'|,,...,dy"|,) is a basis for T*M. Define F : U — R" by F(p) =
(y'(p),...,y"(p)). We claim that dF} is invertible. Let (vi,...,v,) be the dual basis to
(dy'l,, ..., dy"],), so .

vi(dy’[p) = 0;5

We canonically identify (7,;M)* with T),M, so we can also think of v; as a vector in T, M. If

(x!,...,2") are the standard coordinate functions on R", then we have

AF,(v)(2%) = v(a? o F) = v = 5,

We claim that the kernel of dF), is trivial. If a’v; € ker dF},, then
0= de(aivi)(a:j) = Zaiéij = aj

for all j, so a'v; = 0. Thus dF}, has trivial kernel, so it is injective. Since it is a linear map
between T,M and T,R", vector spaces of the same dimension, this implies that it is bijective
(and hence invertible). Now by Theorem 4.5 (Inverse Function Theorem for Manifolds),
there exists a neighborhood V' of p such that F|y : V — F(V) C R" is a diffeomorphism.
Thus (y',...y") are smooth local coordinates on V.

Now we show (2). We have a linearly independent k-tuple of covectors (dy;, o dy]y)
in TyM, so we can extend it to a basis (dy*lp, . .. dy*|,, w*, .. w"). By the above lemma,
there exist smooth functions y**1 ... 4" defined on a neighborhood of p such that dy**1|, =
Wt dy"|, = w". Then by part (1), (y',...,y") are smooth coordinates for M in a
neighborhood of p.

Now we show (3). We have (dy'[,,...,dy"|,) spanning T*M. As every spanning set

of a vector space contains a basis, there exist indices i1, .. .4, such that (dy|,,...,dy"|,)
is a basis for T*M. The by part (1), (y",...,y") are smooth coordinates for M in a
neighborhood of p. O]

Proposition 0.5 (Exercise 11-7a). Let F : R? — R? be the map F(z,y) = (zvy,e¥) = (u,v)
and let Wy = x dy —y dx. Then

Frw = (z — 1)ye® do — xe®” dy

7



Proof.

Frw=(uoF)d(voF)+ (—vo F)d(uoF)=xyd(e") — e"d(xy)
= zye® do — e*(y do + x dy) = zye® do — ye® doz — xe” dy
= (z — 1)ye® do — xe® dy

[]

Proposition 0.6 (Exercise 11-10c). Let f : S? — R be the map f(p) = z(p), the z-coodinate
for p as a point in R®. Let (u,v) be the stereographic coordinates on S*\ {N}. Then
4du 4v

df = d d
/ (1+ u? +v?)? u+(1~|—u2+112)2 !

on S*\ {N}, and df, = 0 at only the north and south poles.

Proof. We can write f as

w+v?—1
o) = T
Then of o/ 1 1
u v
df = Sodut =dv = d d
4 T T Ut o T ar e oo™

This is zero precisely when (u,v) = (0,0) which is at the south pole. Let (s,t) be the
stereographic coordinates on S? \ {S}, then we have

—s?—t?+1
f(S,t):#
se+t2+1

then
—4s —4t

ds + dt
(1+s2+12)? (1+ 52 +12)2

This agrees with our other computation of df on S?\ {N,S} and allows us to compute
dfy = df(s.)=(0,0) = 0. O

Proposition 0.7 (Exercise 11-11). Let M be a smooth n-manifold and C' C M an embedded
k-dimensional submanifold. Let f € C*°(M) and suppose that p € C' is a point at which f
attains a local mazimum or minimum value among points in C. Let ¢ : U — RF be a smooth

local defining function for C' on a neighborhood U of p in M. Then there are real numbers
A1, ... A\, such that

df =

df, = Mdo|, + ... + \dd"|,

Proof. By Theorem 5.8, there is a smooth chart (V,v) for M with p € V' such that V. N C
is a single k-slice in U. We may choose V' C U by taking the portion of V' contained in U if
necessary. Let f f o1~ be the coordinate representation of f, and define V= (V) and

d=c¢oland p= ¥ (p). Note that then p is a local extrema for 7.
Because ¢ is a defining function for C, it is constant on C', so ¢ is constant on V. If
o', ..., ¢" are the component functions of ¢, then we have functions ¢* : V' — R, all of which

8



are constant functions as 5 is constant on V. Let c = &(x) So p is a local extrema of f
subject to the constraints

i(r) —ci =0
Because ngS is a submersion, the Jacobian is invertible. Thus by the method of Lagrange
multipliers on R”, we know that there are real constants \q, ..., A\; so that

dfy = Ndd' |5
By the chain rule, we have

dfy=d(f o5 = df, o iy
d¢) = d(¢/ 0 ™)y = dg) o iy

so then

dfy o dyst = X (dg) o dyst) == df, = A\jd@] o dys o dipy = N;d)

which was what we set out to show. O



